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Implication for health policy/practice/research/medical education:
The initiation of erythropoietin therapy for the purpose of renoprotection may need to be 
sooner than that for erythropoiesis, because erythropoietin may attenuate renal fibrosis 
through macrophage adjustment and endothelial cell protection by other uncertain mechanisms. 
Although, agents re-establishing the initial function of renal erythropoietin-producing cells 
could defer kidney fibrosis, however more studies should be carried out to determine the cellular 
target of erythropoietin in kidney and developinga new erythropoietin derivative for renal care.
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Erythropoietin improves anemia in almost all patients 
with chronickidney disease (CKD) (1,2). Anemia seems 

to be an indicator of tissue hypoxia which deteriorates 
kidney damage in CKD (1-3). Erythropoietin provokes red 
blood cell maturation in bone marrow and accentuates 
erythropoiesis (3,4). It is a glycoprotein and a member of 
class I cytokines (3,4).  Peritubular interstitial fibroblasts 
in the renal cortex and outer medulla release most part of 
erythropoietin (3-5). The amount of oxygen supply to the 
tissues appears to control erythropoietin synthesis in a 
feedback pathway. Hypoxia induces a factor that regulates 
the renal erythropoietin gene transcription, which in turn, 
controls the productionof erythropoietin (3-5). Renal 
fibrosis is the final common event in all CKD types with 
different etiologies (5,6). Persistent inflammation and 
transition of pericytes to myofibroblast causes kidney 
fibrosis and lesser amount of erythropoietin production 
(4-7). To date, administration of erythropoietin has 
had a significant impact on anemia improvement and 
reduced hypoxic tissue damage (6-9). New upcoming 
data suggest renoprotective potentials of erythropoietin. 
Recently, renoprotective effect of erythropoietin has 
become revealed which is not related to its erythropoetic 
properties (10-12). Different studies have shown renal 
protective effect of erythropoietin in acute kidney injury.

 In a trial, we tested the hypothesis that erythropoietin 
protects renal tubular cells, enrolling 40 male rats. We 

showed that erythropoietin prevented the kidneys from 

acute kidney injury. Also, we found that administration 
of erythropoietin along with gentamicin reduces renal 
damage comparing control group. As well; erythropoietin 
was also effective, when it was administered after the 
occurrence of gentamicin-induced tubular damage. This 
revealed that erythropoietin was still effective after 
installation of renal damage (13). Therefore, erythropoietin 
seems to be a promising renal protective agent against 
nephrotoxic tubular damage caused by gentamicin or 
other aminoglycosides (1-6,14). Recent studies have 
unveiled the cellular mechanism of renal erythropoietin 
synthesis and the following events leading to renal fibrosis 
(2-7,14-16). Interestingly, fibroblasts from damaged 
tubular epithelial cells have no significant contribution 
in renal fibrosis, but renal erythropoietin-producing 
cells, originating from neural crests, differentiate into 
myofibroblasts in long time exposure to inflammation. It 
seems that they are involved in renal fibrosis (6,8,17,18). 
Indeed, nearly all myofibroblasts that express α-smooth 
muscle act in originates from the renal erythropoietin-
producingcells; they are normally peritubular interstitial 
fibroblastic cells expressing neural cell marker genes but 
they do not express α-smooth muscle actin. Macrophages 
and myofibroblasts are dominant cells causing kidney 
fibrosis. Macrophages can be differentiated to phenotype 
M1 (classically activated) or M2 (wound healing) 
regarding to the distinctive cytokine production (1-8, 14-
17). While, erythropoietin can disconnect macrophages 
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by abolishing the activity of NF-κB, in vivo macrophage 
regulation could be one of the mechanisms that explain the 
antifibrotic properties of erythropoietin in CKD (13-18). 
These important findings define the missing link in CKD 
between renal fibrosis and anemia (14-18). Some recent 
studies have indicated the improvement of renal function 
in CKD following administration of erythropoietin (12-
18). Different notable evidences imply some benefits of 
erythropoietin other than the improvement of anemia 
such as the pleiotropic effects on the cardiovascular 
system and on the kidney (11-17). Clinical evidences 
suggest the erythropoietin renoprotective potential in 
patients with CKD, however more clinical trials are needed 
to clarify the time of initiation of erythropoietin treatment 
and the optimum dose of erythropoietin for reduction of 
disease progression in patients with CKD. The initiation of 
erythropoietin therapy for the purpose of renoprotection 
may need to be sooner than that for erythropoiesis, because 
erythropoietin may attenuate renal fibrosis through 
macrophage adjustment and endothelial cell protection 
by other uncertain mechanisms (1-9). Although, agents re-
establishing the initial function of renal erythropoietin-
producing cells could defer kidney fibrosis, more studies 
should be carried out to determine the cellular target 
of erythropoietin in kidney and developing a new 
erythropoietin derivative for renal care (15-18).
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