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Implication for health policy/practice/research/medical education:
The appearance of renal risk variants of APOL1 gene (G1, and G2) protect the host against African sleep sleekness; however, 
predispose carriers to kidney disease. In the present study, we did not find any of these variants in a group of hemodialysis 
population.
Please cite this paper as: Zununi Vahed S, Rikhtegar E, Ebrahimzadeh V, Haghi M, Tolouian R, Mohajel Shoja M, et al. APOL1 
renal risk alleles in patients on chronic hemodialysis in Northwest of Iran. J Renal Inj Prev. 2019; 8(3): 199-203. DOI: 10.15171/
jrip.2019.37.

O
rig

in
al

Introduction
APOL1, a key apolipoprotein component of high-density 
lipoprotein (HDL) molecule, is unique to humans and 
some primates. It has trypanolytic activity and protects 
them against African trypanosomes.  This is one of the solid 
defense mechanisms against Trypanosoma which causes 
sleeping sickness (1-4). However, one of the Trypanosoma 
species (T. brucei rhodesiense) overcomes the lytic effects 
of APOL1 by expressing a serum resistance-associated 
(SRA) protein (1). It binds to and inactivates APOL1 in 
the endosomal and lysosomal compartments, allowing 
the trypanosomes to proliferate (5,6). This evolutionary 

burden leads to the emergence of two common human-
derived APOL1 variants (G1 and G2) on chromosome 
22. These polymorphisms did change the APOL1-SRA 
binding domain (7) and did restore its trypanosomes lytic 
activity. APOL1 genetic variants that have lytic activity 
against T. brucei rhodesiense predispose the host to 
various type of kidney diseases including focal segmental 
glomerulosclerosis (FSGS), HIV-associated nephropathy 
(HIVAN), lupus nephritis, hypertensive nephropathy 
(HTN), and accelerated progression of diabetic kidney 
disease (6-8), particularly when allelic frequencies did 
raise in the population and permitted homozygosity (5). 

Introduction: Apolipoprotein L1 (APOL1) gene’s risk variants located on chromosome 22 are 
newly discovered factors for the development of chronic renal failure among African-American. 
These risk alleles were developed on the African continent as an evolutionary defense against sleep 
sickness due to Trypanosoma brucei rhodesiense and then spread with human migrations.
Objectives: In the present study, we sought to examine these risk variants in a group of hemodialysis 
patients of Northwest of Iran.
Patients and Methods: Two hundred patients receiving hemodialysis in different centers of the city 
(Tabriz in Northwest of Iran) were allocated randomly from a total number of 825 patients. The 
assessment of APOL1 polymorphisms (rs73885319, rs60910145, and rs71785313) was conducted 
using polymerase chain reaction–restriction fragment length polymorphism (PCR-RFLP) method. 
Patients’ demographic data, history, and their biochemical parameters were recorded based on their 
last measurement.
Results: No proposed renal risk variants of APOL1 gene in our hemodialysis population were found. 
All the participants had a wild genotype.
Conclusion: The results of our study match with reports from Europe and Asia. In the 
paleoanthropological point of view, our results do not support African human migration hypothesis. 
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End-stage renal diseases (ESRD) is an important public 
health burden, affecting over half a million people in the 
United States. Approximately 14% of Americans with 
African ancestry carry 2 APOL1 risk alleles that predispose 
them to develop ESRD at rates 4 to 5 times higher than 
European-Americans, accounting for the high chronic 
kidney disease (CKD) burden in this population (6). The 
appearance of APOL1 renal risk alleles (APOL1-RRV) has 
had evolutionary origins, selection for protection against 
T. brucei endemic to sub-Saharan Africa that causes 
sleeping sickness. However, they are associated with 
5–29 times higher odds of severe kidney disease, such 
as nondiabetic with an impressive odd ration of 16.9 for 
idiopathic FSGS (6,9,10). 

Objectives
It is needed to explore the differences in APOL1 variability 
among different races to provide more evidence on future 
genetic studies on APOL1-related kidney disease. APOL1-
RRV has impact on innate immunity, vulnerability to 
CKD and its severity, and the risk of progress to ESRD. 
The Northwest of Iran was speculated as a gateway for 
prehistoric human migration toward Russia and Europe. 
The aim of this study is to assess the prevalence of APOL1-
RRV in Azarian hemodialysis patients in Northwest of 
Iran.

Patients and Methods 
Sample collection
A total of 200 patients with End Stage Renal Disease 
(ESRD) on maintenance hemodialysis were recruited from 
dialysis Units of Imam Reza, Sina, Army and 29 Bahman 
Hospital at Tabriz from May 2017 to April 2018. The 
sample size was calculated based on the 12% prevalence 
of chronic kidney failure in population (error rate= 0.05, 
Power= 80%). The total population of East Azerbaijan in 
Northwest of Iran is approximately estimated around 3.9 
million. Close to half of this population lives in Tabriz, 
which is a metropolitan large city. The total number 
of patients on chronic hemodialysis treatment in East 
Azerbaijan is 1,380, of which 820 of them are receiving 
chronic hemodialysis in city of Tabriz. Patients with ESRD 
on chronic hemodialysis who were 18 years of age or older 
were included in the present study. We excluded subjects 
with diabetic nephropathy, obstructive nephropathy, and 
autosomal dominant polycystic kidney disease (ADPKD). 
Other clinical data including age, gender, weight, height, 
dialysis vintage, kidney biopsy, if any, the cause of kidney 
failure, family history of kidney disease and hypertension 
were collected by chart review or face to face interview.

APOL1 genotyping
Genomic DNA was extracted from whole blood 
samples (5 mL) according to the Samadi Shams et al 
protocol (11). The APOL1 genotype at the G1 and G2 

loci was determined using PCR–restriction fragment 
length polymorphism (RFLP) method. G1 comprises 
rs73885319 (Ser342Gly) and rs60910145 (Ile384Met) 
missense mutations. The G2 variant is characterized by 
2 amino acids (6 base pair) deletion (N388/Y389) (12, 
13). APOL1 high-risk genotypes defined as having 2 
risk alleles (G1/G1, G1/G2, or G2/G2) and the low-risk 
genotypes as having 1 or no risk alleles (G1/G0, G2/
G0, G0/G0). PCR reaction was performed to amplify a 
fragment (458bp) containing 3 variant sites using APOL1 
forward (5′-AGACGAGCCAGAGCCAATCTTC-3′) 
and reverse (5′- CACCATTGCACTCCAACTTGGC 
−3′) primers (12). PCR reactions (25 µL) was done in an 
initial denaturation step (at 94 ° C for 2 minutes) that was 
followed by 30 steps of denaturation temperatures at 94 ° 
C for 1min, annealing at 66°C for 1 minute, and extension 
step at 72°C for 1min, and a final extension step at 72°C 
for 2 minutes. PCR products were run on 1/5% Agarose 
gel to determine product size. After approval of product 
size, an independent RFLP test was accomplished for 
each of the SNPs (Table 1). For each RFLP reaction, PCR 
product (2 µL) was digested with the enzyme (10 units) 
and the fragments were separated on a 2% agarose gel. 

Ethics issues
The study was conducted in accordance with Tenets of 
the Declaration of Helsinki. The present investigation 
was approved by the committee of clinical research ethics 
of Tabriz University of Medical Sciences (Ethical code: 
IRTBZMED.REC.1396.121). The protocol of the study was 
clarified to all participants and written informed consent 
was achieved from the patients. This study was extracted 
from a thesis of residency in internal medicine of Tabriz 
University of Medical Sciences, Tabriz, Iran (# 57845). 

Statistical analysis
Data  were given as mean ± SD for normally distributed 
variables. Median (with maximum and minimum values) 
was used for non-parametric analysis. Statistical analysis 
was performed using SPSS statistical software, version 16.0 
(SPSS, Chicago, IL). P < 0.05 was considered significant. 

Results
A total of 200 non-diabetic patients (142 men and 58 
women) on hemodialysis were included in this study. 
The patients were on hemodialysis for a median of 36 
(minimum: 1, maximum: 264) months. Their mean age 

Table 1. Restriction enzymes used in the present study

APOL1 
genotype SNPs Restriction 

enzymes

G1 rs73885319 (G1S342G), A>G Substitution HindIII

rs60910145 (G1I384M), T>G Substitution NspI

G2 rs71785313, 6 bp deletion MluCI
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was 56 ± 16 years. The causes of ESRD were hypertension 
in 164 (82%), glomerulonephritis in 16 (8%), and unknown 
in 20 (10%) patients. The mean ± SD of cholesterol, 
triglycerides, and HDL-C levels were 149±40, 157±35, 
and 37.5±12 (mg/dL), respectively. The genetic study 
identified that all of the studied hemodialysis participants 
were G0 homozygous, neither of them was identified as 
containing G1 or G2 risk alleles (Figure 1). 

Discussion
Advanced chronic renal failure is a prominent phenotypic 
presentation/association of APOL1-RRV.  We assess 
the prevalence of this gene in our region. In our study, 
no APOL1 risk alleles in our sampling group of ESRD 
patients in Northwestern part of Iran were found.  To 
have higher yield, those patients with diagnosis of diabetic 
nephropathy, ADPCKD, and obstructive uropathy had 
excluded.  Our findings were compatible with the data 
from 1000 Genomes projects and other studies indicated 
that G1 and G2 were not present in any chromosomes of 
Japanese, Chinese, Indians (14,15), and Europeans (6, 16) 
(Figure 2).

APOL1 gene is unique to humans and some primates 
and protects them against African trypanosomes. 
ApoL1 protein lyses trypanosomes mediated by osmotic 
swelling of parasite lysosomes through a pore-forming 
mechanism. However, T. brucei rhodesiense produced 
virulent factor (SRA) that neutralizes APOL1 by binding 
to its C-terminus. Both APOL1 risk variants alter the SRA 
binding amino acid within the C-terminal of APOL1 thus 
preserving lytic activity (6,17).

The exact mechanism by which APOL1 variants cause 
kidney disease remains unknown. Vascular endothelial 
dysfunction and impaired renal microcirculation have 
been proposed as potential mechanisms (18). APOL1 
is localized in podocytes, proximal tubular epithelial 
cells, and small-artery endothelium (19-21). APOL1 –
RRV that produced by these cells may induce cytotoxic 
damage (1,22). In humans, APOL1 circulates in the blood 
(5-μg/mL). Its level is not increased with RRV (19,21), 
but became less bound to HDL and consequently, easily 
filtrates. A direct toxic effect of filtrated APOL1-RRV on 
proximal tubular cells and apoptosis of podocytes (22) are 
another pathogenic possibility (5).

Increased chloride permeability with resultant 
lysosomal swelling and lysosomal rupture could be 
another underlying mechanism of the podocyte injury 
(1, 23). In Drosophila model, expression of APOL1-G1 in 
nephrocytes increased endocytosis of albumin. The same 
mechanism may create podocytes damage in human (24). 
APOL1 also transports cations (K+) across lipid bilayers 
and APOL1-RRV by decreasing intracellular K+ through 
the aberrant activity of the stress-activated protein kinases, 
p38 MAPK, and JNK signaling triggers renal cells damage 
(25). Moreover, APOL1-RRV reduces mitochondrial 

catalase and superoxide dismutase 2 (SOD2) and 
predisposes the cell to oxidative damage by reactive oxygen 
species (ROS) and causes mitochondrial dysfunction (26). 
Nicotinate phosphoribosyl transferase gene, responsible 

Figure 1. Gel electrophoresis of APOL1 gene polymorphisms. PCR-
RFLP reaction was performed to amplify and digest a fragment 
(458bp) containing 3 variants including (I) rs73885319 (Ser342Gly), (II) 
rs60910145 (Ile384Met), and (III) N388/Y389 using HindIII, NspI, and 
MluCI enzymes. 

Figure 2. The trace of APOL1-RRV. The association of APOL1, 
trypanosomiasis, and kidney disease is an evolutionary process 
of natural selection started in sub- Saharan Africa and led to the 
appearance of risk variants allele of APOL1 gene, G1, and G2 that 
protect the host against African sleep sleekness but predispose them 
to kidney disease. African population carries these alleles while they are 
absent in Asian. Two possibilities: First, APOL1 risk alleles are emerged 
in Africa, around 40000 years ago that is after the completion of out 
of African migration and there was not any risk allele to enter Eurasia. 
Enduring out of African exceeds, 50–100 thousand years ago. So these 
risk alleles are not found in Europeans (36), and Asian; Chinese (16), 
and the present study. Second; because we do not precisely know from 
when this mutation has developed in sub-Saharan Africa and because 
of their existence in some primates, it is possible that the out of African 
trip has never happened and recent population of Eurasia is originated 
from old settlers of those regions, probably Neanderthals. Neanderthals, 
the closest evolutionary relatives of present-day humans, lived in large 
parts of Europe and western Asia before disappearing 30,000 years 
ago. A draft sequence of the Neanderthal genome extracted from their 
bones showed that they shared more genetic variants with present-day 
humans in Eurasia (37).
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for NAD biosynthesis, is also down-regulated by APOL1-
RRV (26). The robust associations of APOL1 with HIVAN 
suggests the inflammation as a trigger that potentiates 
glomerular injury (27,28). Common inflammatory milieu 
in HIV acts as a second hit that induces the expression 
of the APOL1 in macrophages, endothelial, and epithelial 
cells (28), but interestingly IFN-a does not have any role 
in this interaction (4). 

Approximately 40% of individuals with two APOL1–
RRV never develop overt kidney disease (29,30). 
Individual differences in downstream apoptosis and 
autophagy signaling (29) and genetically differences in 
ubiquitin-like protein modifier that destined proteasomal 
protein degradation are proposed possibilities (31). 

Trace of this APOL1-RRV could be helpful in 
paleoanthropology study and for some theories such as 
“Out-of-Africa” hypothesis. In paleo-anthropological 
point of view, our finding probably is not in favor of 
“Out-of-Africa” or replacement hypotheses that believes 
“modern humans” evolved only in sub-Saharan Africa, 
then they spread to Asia and Europe (32,33). This 
hypothesis has recently come under skepticism by another 
discipline such as archeological and paleoanthropological 
evidence. Study of the Early Upper Paleolithic (EUP) tool 
traditions of Eurasia do not support the arrival of human 
from sub-Saharan Africa to that region and the findings 
are more in favor of a continuum of a local succession 
of tool making traditions (33). It is also suggested that 
paleoarts objects of EUP era, in Eurasia, attribute to 
“Neanderthals” (34,35).

Conclusion
APOL1-RRV emerged in sub-Saharan Africa as a 
protection against T. brucei rhodesiense but increased the 
risk of chronic kidney disease. A negative result of our 
study was similar to other reports from Europe and Asia. 
In the anthropological point of view, our results do not 
support African human migration hypothesis. 

Study limitations
Relatively small sample size was a limitation of the present 
study.
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